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Abstract: Recently, visual odometry has been successfully applied as a video-based ap-
proach across domains. We adapted this approach to railways achieving excellent results
without using any other conventional rail sensors. Herewith, we propose an extension to
our visual rail odometry approach that allows to visually compensate for the inevitable
odometry drifts based on sporadically visible local scene structures and that provides
means for a highly accurate train localization based on existing geo-referenced infras-
tructure of the rail system. The specific conditions of the visual rail navigation require
an adaptation of the conventional VSLAM (Video-based Simultaneous Localization and
Mapping) systems to cope with the limited and self-similar property of the observed area.
We show how this extension can be used to replace the currently used train report system
with a significantly increased global accuracy and reduced drift in the estimation be-
tween the geo-referenced rail structures like balises. Furthermore, a migration scenario
is proposed which overcomes the issue of the approval of new localization systems.

Area: Rail Navigation

1. Motivation

Current train control systems locate trains in a block based manner using track occupancy units
(e.g. axle counter). However, in order to increase the capacity on the tracks, moving blocks will
have to be introduced, running successive trains within their absolute braking distance. With
ETCS Level 2, trains locate themselves with track-side balises and their wheel odometry with a
required accuracy of 5m + 5% of the distance to the last balise group. Realizing moving block
(ETCS Level 3) requires a continuous, highly accurate and safe (up to SIL 4) localization of
the head of each train. Therefore new localization systems for trains are required. The goal of
the Swiss programme ”smartrail 4.0” [1] is that all track bound objects locate themselves track
selective at anytime. Possible sensor combinations for the different use cases are shown in the
related feasibility study [8] focusing on GNSS-IMU-wheel odometry [3]. In the Austrian project
”Greenlight” GNSS is used as the main means of localization in addition to fiber optic sensing
and also IMU [9]. Video localization is a supporting sensor in these projects [2]. According to
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[8], [9] the most demanding use cases are ”Fast and precise clearing of track, switch, barrier
(Use case 1.1)” and ”Precise train end position (Use case 1.2)”. Its requirements with regard
to functional, technical and operational properties of the individual objects to be localized are
shown in Fig. 1.

Figure 1: Requirements in most demanding use cases from [8]

Figure 2: Ground area around
the tracks - the only reliable
source of information for nav-
igation.

Conventional visual odometry achieves the reported high accu-
racy and small drift through selection of well distributed fea-
tures in the entire camera image, which are visible over long
frame sequences. The larger the angular field covered by the
light rays entering the camera, the more accurate is the result-
ing accuracy of the system [5]. However, the large field of view
required for such systems is not available in many situations
during train navigation because of the occlusions in the scene
through trains running on neighboring tracks. In many cases.
the only reliable motion information can be reconstructed from
the areas in the ground area of the tracks in front of the train
(Fig. 2).
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Figure 3: System architecture.

The frame-rate of a camera system (e.g.
1280x1024 @ 60Hz) is often too low to capture
the high-dynamics of the sensed motion. Tilting
trains adapting the train body to the curvature of
the track or trains with a flexible suspension may
require a fast motion capture unit. The resulting
high frequency swings of the train may drasti-
cally change the orientation of the camera to the
ground. This can be solved with an interocep-
tive sensor, like an inertial unit (IMU) (Fig. 3)
or wheel odometry. Interoceptive sensors do not

rely on external information from the environment. This simplifies their processing, makes them
independent on the outside conditions, and allows a fast update rate (> 1kHz). In our system,
we extend the incremental motion sensing with exteroceptive sensing in form of a visual corre-
lation unit that senses directly the relative motion to the static scene and avoids errors like wheel
slip (especially for powered axles), wheel wear or temperature drifts that are difficult to model.
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The incremental systems sense just incremental changes of motion and the occurring errors are
accumulated to drifts of the localization unit. The unavoidable drifts are compensated by a vi-
sual drift compensation unit that observes external structures that may be temporarily occluded
by passing trains. The results are used to estimate the current drift in the position estimated by
the incremental stage. The final unit is a dedicated detector of geo-located rail infrastructure,
e.g. balises, masts for the catenary, bridges, points or other surveyed references, that is used to
provide a global geo-location of the train.

It is still an open issue how to get approval for such a new localization system based on mainly
new technology for rail applications. The necessary ground truth as reference needs to be one di-
mension more accurate than the localization system. Since track selectivity needs to be achieved
with SIL 4, such a reference is hard to obtain at anytime [11], especially for and with GNSS
based systems [10] . However this will be necessary for getting approval by the authorities.

2. Approach

Figure 4: (Left) fusion of the incremen-
tal units, (right) Keyframe update of
the drift when reference structures be-
come visible.

We propose to modify the conventional visual odom-
etry approaches to cope with the uniqueness problems
of the train navigation. Since typical structure from mo-
tion approaches are not feasible in a continuous man-
ner, we base our system on integration of the incremen-
tal units (Figure 3) that can operate at update frequen-
cies higher than a typical camera frame-rate. We use the
structure from motion approaches to estimate the drifts
in an error state Kalman Filter, which can be done with
much lower update frequencies.

The navigation unit (Fig. 3) can further optimize the
calculation of the distance by freezing the reference frame I ′t (key-frame) for a number of fol-
lowing frames, if the estimated velocity is slow. Since the distance traveled is the integral of
the responses from the optical correlation, small detection errors usually integrate to increas-
ing drifts in the distance. Switching to the key-frame-processing results in the detection errors
appearing as noise overlayed over the true distance instead of appearing as accumulated drift.

2.1. Robust Estimation of Metric Motion Parameters

Conventional Visual SLAM approaches use the information from a sparse point matching sys-
tem in the camera images. The points are tracked between the image pairs from the sequence
or matched based on the local information in the neighborhood of the points. The difference is
that while tracking assumes a local search around the expected position, in which a local image
patch is searched, matching allows larger changes in the image position, because each point is
described by a more or less complex description (SIFT or AGAST).
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Figure 5: The rectangular region shown in the
left image is rectified to the “top-view” image
shown on the right. A template in this image is
searched in the consecutive image rectified in
the same way.

While this processing works in most flying
and automotive environments, we need to be
able to match the information in the area of
the tracks with a very strong self similarity
that leads to many mismatches between the
frames. We increase the uniqueness of the lo-
cal environment by growing the local region
to a large area shown in the Fig. 5. We try to
match this template in the consecutive image
using a Sum-of-Squared-Differences (SSD)
method from OpenCV. We refer to this mod-
ule because of the similarity to an optical
computer mouse as “Train Mouse”.

A homography matrix H̃ that was used to calculate the rectified image I ′ in Fig. 5 right H̃ =(
R̃ +

~T~nT

d

)
. The rotation matrix R̃ describes the rotation between the current orientation of the

physical camera and the top-view orientation of the rectified view. The vector ~T describes the
translation between the images, which is zero in our case.

We search for a rectangular template with the size (x′, y′) from the I ′t region of the first image
in the corresponding region I ′t+1 using the SSD template matching method that searches for
the maximum of the function (1):

f(xp, yp) =
∑
x′,y′

(I ′t(x′, y′)− I ′t+1(xp + x′, yp + y′))2 (1)

The estimated displacement (xp, yp)t from the maximum response of f(xp, yp) estimates the
horizontal and vertical image motion of the template between the images. This measures a pixel
accurate shift of the template between the images. The search for the correct displacement for
the current (xp, yp)t can be accelerated by using a prediction of these values. In a generic case,
the system needs to check the entire possible range of {xp, yp} that covers the entire possible
velocity profile. This is a computationally intensive operation. Due to the high inertia of the
train, these value change only little between consecutive frames. We can reduce the search
for the correct placement of the template only to a small band around the previous (xp, yp)t−1
values.

We can calculate a more accurate displacement of the template between the images by applying
a sub-pixel alignment of the templates. If the remaining change between both images is under
1 [pixel] then we can use the Taylor series expansion to explain the brightness change at a
specific pixel I ′(x, y) to:

I ′t(x+ δx.y + δy) ≈ I ′t(x, y) +
∂I ′t(x, y)

∂x
δx+

∂I ′t(x, y)

∂y
δx (2)

If we assume that the new image I ′t+1 is a result of a sub-pixel motion (δx, δy) then we can
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estimate from the equation:

I ′t+1(x.y)− I ′t(x, y)
∂I ′t(x, y)

∂x
δx+

∂I ′t(x, y)

∂y
δx = ~GT · δ~p = ||~G|| · ||δ~p|| (3)

with ~G =

(
∂I ′t(x, y)

∂x
,
∂I ′t(x, y)

∂y

)T

We see that once we calculated the gradient vector G from the previous image, we can calculate
the sub-pixel update of the motion in horizontal and vertical direction (δx.δy) by decomposing
the motion || ~δp|| along the gradient according to the horizontal and vertical ratios of ~G.

We calculate the resulting shift as an average of responses within the template. It is obvious
from (3) that only pixels with a difference in brightness between the images contribute to the
motion estimation. We reduce the sensitivity to noise by using only pixels with the gradient
above a threshold ||~G|| > εG, which is tuned depending on the expected camera noise.

The resulting average image motion (∆x,∆y) can be linearly scaled to the forward and side-
wards metric velocity with knowledge about the mounting height L above the ground. The
metric values of the forward velocity vl and the side-wards motion vs (due to curves in the
route) can be computed from similar triangles relation between the camera projection on the
image plane and the relation of the height L of a rectified camera providing the image I ′ to:

∆xi = xp + δx, ∆yi = yp + δy, vl =
L · py
f · tf

∆yi, vs =
L · px
f · tf

∆xi (4)

Possible changes in the orientation of the camera image I ′ scale it with the focal length f , the
metric pixel-size (px, py) and the time interval between two frames tf as it is shown in (4).

2.2. Keyframe State Update from Rail Infrastructure

In the recent years, the development of Vision Aided Inertial Navigation Systems (VINS) [6]
showed great progress. Mourikis et al. [7] demonstrated a hard-realtime capable mono vi-
sion/IMU fusion algorithm using an Extended Kalman Filter (EKF). In their approach a certain
window over past poses is kept within the filter state vector to process feature measurements
taken from different locations along the traveled trajectory. Using limited data windows makes
real-time implementation possible but turns the system into an odometry system as trajectory
loop closures cannot be integrated (Figure 4).

System state estimation for safety critical systems requires sensor data fusion in hard real-time.
Probabilistic filters are often used for this purpose due their simplicity, low computational com-
plexity and deterministic timing behavior. A numerically robust filter implementation as well
as full system state observability are fundamental to guarantee long-term stable state estima-
tion. While numerically stable algorithms are well established, a state estimation formulation
with full observability can not always be guaranteed. This situation is critical in two aspects:
firstly, unbounded filter covariances can cause numerical instability. Secondly, linearization of
non-linear systems often assumes small state errors.
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A transformation function between the unobservable states and a local reference is defined
while the local reference is augmented to the filter state vector. The prediction step is used to
switch the filter states and its covariance to the new local reference. It is marginalized out at the
same time. We propose the concept of a vision-aided inertial navigation filter. We sporadically
change the filter reference frame to a new frame with a lower relative uncertainty compared to
the current system state. We separate local real-time state estimation from global navigation and
relax timing constraints on the latter one. The implementation is realized as a square root UD
filter [4] to improve numerical stability. Stochastical cloning [7] is used in (5) for the correct
fusion of two updates with varying latency time ∆T (Fig. 4).

x̃k+1 =

(
xaug
xk+1

)
=

(
Ĩ 0̃

0̃ Ãk

)(
xaug
xk

)
P̃k+m|k =

(
P̃kk P̃kkF̃

T

F̃ P̃kk P̃k+m|k

)
, with F̃ =

m∏
i=1

Ãk+i

(5)
In SIL 4 approved ETCS Level 2 operation, a train is sending every 6 seconds a train position
report (TPR) to the Radio Block Center (RBC). The TPR consist of the last passed balise (group)
and the traveled distance from there as well as the direction of travel. To overcome the issues
of certification we propose that in a 1st stage we prove that the new localization system has
the same performance regarding quality and safety than the certified one (GAMAB principle).
Therefore with the new localization system (regardless of the technology) the same TPRs have
to be generated with at least the same quality. Successfully comparing a statistical relevant
number of TPRs from the current and new systems can be used to get approval according to
e.g. CSM 2013/402/EC [11]. Within the presented video localization we will use a global drift
compensation with natural reference points and rail infrastructure other than balises (e.g. points,
bridges, tunnels, catenary masts). However we will use visual balise detection - without the need
for a separate sensor - in order to trigger the TPR generation for comparison purposes. With a
successful proof of the same or better quality of the new system we can introduce ”artificial
balises” wherever required to meet the requirements for realizing moving block. At the same
time, this will lead to a lean and promising migration strategy (no change to the ETCS interface
to the RBC).

3. Results

Figure 6: Installation of the camera system.

The mobile system for the image acquisition
in real trains is composed of a NIR camera
with a focal length of 8mm and resolution of
1280x1024 pixels @ 60Hz, a GPS receiver
for time synchronization with GPS time, a
rapid prototyping computer (i7-6700 with 8
cores @ 2.40 GHz) and a battery pack for an
independent power supply. The camera sys-
tem was mounted on the windscreen of the lo-
comotive with a pitch angle towards the track

of 8◦ (SBB setup) or 21.5◦ (OeBB setup) resp.. The bigger tilt angle was chosen in order to
have a better pixel resolution of the track width, since according to [2] the track detection in the
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image is the dominant contribution to the uncertainty. Tilt and yaw angles will be identified and
compensated for during image processing as proposed in [2].

The installation in a Swiss locomotive Re 420 and an Austrian locomotive/baggage car class
4061 can be seen in Fig. 6. On the Re 420 only the camera system was installed where the
reference GPS/IMU system was installed on a measurement coach that was coupled to the
Re 420. This leads to some synchronization issues in time (latencies) and place (locomotive
starts/stops moving earlier than the coach).

Figure 7: Comparison of the estimated paths between Ostermundingen and Thun:(cyan) camera
w/o correction, (red) GNSS/IMU reference, and (yellow) camera with update with railway point
frogs (green triangles).

Figure 7 shows the calculated 3D path without drift compensation (cyan) of one of the mea-
surements taken from Ostermundingen to Thun in Switzerland using only data collected from
the camera located in the locomotive. The calculated path is compared with the GNSS/IMU
combination (red). Small deviations are observed in both the integrated distance (the image-
to-real world distance scale shall be refined) and in behavior in the curve (optical flow to be
refined). The measured path does not rely on global reference, meaning that a drift of the
measured position is expected and should increase with the traveled distance. The corrected
3D path (yellow) by using railway point frogs (green triangles) as global references reduces
the deviations to a precision below 0.25m and the accuracy below 1m (see [2] for details).

Figure 8: Comparison of the traveled dis-
tance between visual odometry and GPS.

In ETCS a 1D coordinate system (traveled dis-
tance along the track) is used instead of a world
global 3D coordinate system (e.g. longitude, lat-
itude, altitude). Applying a 1D coordinate sys-
tem to the visual odometry results in reduced
deviations to the track topography (GTG) and
GNSS/IMU combination. [2] shows that the drift
is below 1% for all eight test runs between Os-
termundigen and Thun (route length ∼26 km).
Figure 8 shows the result when comparing to
GPS/IMU for an exemplary test run on this route.

In [2] the calculated distance is also compared to
the distance between balises. The balises can be identified in the acquired images. The first
balise of each balise group is taken for the calculation of the distances. Figure 9 shows the nom-
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inal distance (black) from the track topography, the distance calculated by using the GNSS/IMU
combined measurement (red) and the distance calculated by Visual Odometry (blue). The drift
between the nominal values and the values measured by Visual Odometry are below 0.7%.

Figure 9: Comparison of the traveled distance for consecutive balises[2].

Figure 10: Identification of the frog

The longterm goal in railways is to re-
move costly infrastructure elements in the
track (e.g. balises, axle counters). Therefore,
balises can only be used as global references
for a migration scenario and for proving that
the new localization is at least as good as
the current approved localization with balises
and wheel odometry. The TPRs of the current
system can be compared with ”virtual” TPRs
from the new system generated in the back-
ground before using them. Railway points frogs can also be used as global references for visual
odometry. The identification of the frogs in the acquired images is a side product of the track/rail
identification needed for visual odometry. As can be seen in Figure 10 the frog is the intersection
of the inner rails of adjacent tracks.

Figure 11 shows the difference between the traveled distance between consecutive points frogs
from the track topography (GTG) and visual odometry. It can be seen that for most of the mea-
surements, the drift is smaller than 1%. However there a still a number of measurements with
higher drifts. The determination of the intersection between the rails is sensitive to uncertainties
in the rail identification and therefore the identification has to be improved (e.g. higher pixel
resolution of track width) in order to be more robust.

The mobile camera setup cannot use an external light source e.g. IR illuminator that has to
be mounted outside the locomotive. Therefore a computation of the visual odometry within in
tunnels (or at night) is not possible with this setup. However tunnel entries/exits could be used as
global references. Figure 12 shows a measurement run in Austria between Vienna Heiligenstadt
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Figure 11: Traveled distance between consecutive points frogs

Figure 12: Traveled distance between tunnels - reset after tunnel (red)

Figure 13: Accuracy of the pose estimation with drift compensation.
and with 6 tunnels. The tunnel exits were used a global references. The first results show that the
drift of visual odometry compared to GPS/IMU for this ∼6.5 km route is always below 1.5%.

In Figure 13, we tested our framework on a shorter distance with a cheap IMU as the navigation
unit. The camera was updating the drift estimate with every 4s. This also allows for a better
compensation of the train navigation.

4. Conclusions

Visual odometry together with global references can be used for localization of trains. In or-
der to reach the necessary SIL4 for train localization, a combination with other sensors (e.g.
GNSS/IMU, FOS, map) is still required. Currently, the system is one of several sensors in the
architecture of the Greenlight project of OeBB. In this project it will also be used to synchronize
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the different sensors and rail infrastructure (e.g. balise, axle counters) with GPS time in order
to create virtual TPRs that could be compared with the real TPRs. With the measured drift
compared to track topography it could be determined the maximum traveled distance before
a global reference is required. Thus, analyzing the railway network with regard to points and
tunnels will show where additional global references will be required. Improvements in track
width, rail and frog detection will lead to even better results in the future.
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